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1. I n t r o d u c t i o n  

Let U and V be two topological Hausdorff spaces, X, Y be two non empty subsets 
respectively of U and V, fl  be a function from U x V in t t  and f2 be a function 
from U x V in I tU {+oo}. In this paper we consider the following weak Stackelberg 
problem 

Min sup f l ( x , y )  
xEX  yEM2(x) 

S where M2(x) is the set of optimal solutions to the problem 

P ( x ) :  Min f2(x,y) 
yEY 

E X solving S will be called a Stackelberg solution to S, any pair (~, ~) with 
E M2(~) and • E X solving S a Stackelberg equilibrium pair and 

vl = inf sup f l ( x , y )  
vEX  yEM2(x) 

the value of S. 
To motivate such a study we refer to some previous works ([5], [15], [19], [25], 

[30], 
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The problem S may have no solutions even for nice functions f l  and ./2, so the 
following regularized problem S(¢) has been considered for ¢ > 0. 

{ Min sup f l  (z, y) 
zEX yEM~(x,~) 

where M2(z, ¢) is the set of 6-solutions to 

P ( z ) :  Min f2(z, y) 
yEY 

Let us point out that sufficient conditions of minimal character ensuring well- 
posedness and existence and stability of the solutions to the regularized problem 
under data  perturbations have been given in [23], [25], [26], [27], [28], [34] . . .  In 
our opinion these theoretical results get an insight into the inherent difficulties of 
the problem and can explain the lack of non heuristic numerical methods in the 
continuous case. 

Nevertheless there is an other kind of Stackelberg problem, namely the strong 
Stackelberg one, which appears to be best handled: 

Min inf f l (z ,Y) 
zEX yeM2(z)  

where M2 (x) is the set of optimal solutions to 

P(z) { yerMin f2(z ,y)  

In fact, for such a problem under inequality constraints, in addition to existence 
and stability results ([24]) there are different papers on necessary and sufficient 
conditions [8], [11], [36], [39], [40] and numerical methods ([2], [4], [6], [10], [12], 
[13], [14], [17], [35], [37], [38] . . . ) .  But the method described by Molodtsov (in 
[33]) which approaches the weak problem S by a sequence of strong Stackelberg 
problems could be a first step towards the numerical resolution of the problem S. 
So it appeared useful to us to go further on the Molodtsov results. First results in 
this direction have been given in [29] and [1]. 

In this paper, we first recall the Molodtsov method and its convergence results on 
the values of the strong approximate problem, obtained for continuous functions. 

Then in section 3 we present complementary results on a regularized version of 
the problem (S) already considered in [15] and [26], [27], [28]. These results allow 
to present in section 4 more general properties on Molodtsov approximation under 
assumptions of minimal character as well on the values as on the solutions. 

Then, in order to open a way for the use of numerical approximations (such that 
discretizations and penalizations), perturbations on the data  of the problem (S) 
will be considered, in section 5, for what concerns Molodtsov values. In section 
6 convergences of Molodtsov marginal functions and approximate solutions under 
perturbations will be given. 
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Let us note there is a gap between the results obtained without perturbations and 
under perturbations. For example, as shown in section 6, there is a class of data  for 
which the convergence of the solutions to the approximate unperturbed problems 
to an exact lower Stackelberg equilibrium is guaranteed but when perturbations are 
involved the convergence is obtained only to a lower Stackelberg equilibrium pair. 

2. M o l o d t s o v  r e s u l t s  

First of all we recall the method introduced by Molodtsov in [33]. For 1~ _> 0 let: 

g(x,y,  f l ) = f 2 ( x , y ) - f l f l ( x , y )  fo rany  x • X  and y • Y .  

For fl > 0 and 7 >- 0 the following strong Stackelberg problem can be defined: 

Q f l  ,'l 

Min inf f l  (x, y) 

where M(x ,  fl, 7) is the set of "/-solutions 

to the parametrized problem: 

R/3(x) : Min g(x,y,  fl) 
y E Y  

In the sequel, we shall let v2 (z) = inf f2 (x, y). 
Y E Y  

The following two propositions are nothing but an adaptation of the results in [33]. 

PROPOSITION 1 Let fl >_ O, 7 >- 0 and assume: 

(2.1) 

(2.2) 

v2(x) is a real finite number for any x • X , 

there exists c > 0 such that I f l ( x ,  y) I< c 

for any x • X and any y • Y ; 

then M(x ,  fl, 7) is a non empty set for any x E X and M(x, fl, 7) C M2(x, 7 +  2tic). 

P r o o f :  a(x ,  y, Z) >_ v2(x) - Zc > - ~  for any ~ • X and ~ • Y then M ( ~ ,  Z, 7) = 
{y • Y :  g(x, y,/~) < inf g(x, z, fl) + 7} is non empty. 

- -  z E Y  

Moreover A ( x , y ) -  ~c < g(z ,y ,  fl) for any y • Y and, for y • / ( x , f l , 7 ) ,  
g(x, y, t~) < f2(x, z) - f i l l  (x, z) + 7 for any z • Y. Then we deduce: 

f 2 ( x , y ) - ~ e < _ v 2 ( x ) + ~ c + 7  fo rany  y e M ( x , ~ , 7 )  

and the result follows. 
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Define, for e > 0 

(2.3) wl (x, e) = sup f l  (x, y) vl (e) = inf wl (x, e) 
y E M 2 ( a : , c )  x E X  

and ~(~ ,  O) = ~(~)  ~(0) = ~ 

we have: 

P R O P O S I T I O N  2 Let e > O, ~ > O, 7 >__ 0 and assume that assumptions (2.1), (2.2) 
are satisfied, then: 

(2.4) f l (x ,y)  < w l ( x , 7 + 2 f l c )  forany  y E M ( x ,  fl, 7 ) 

(2.5) ~ ( ~ , ~ )  _ ~ +____2 < I~(~,~) + ~ ( v 2 ( ~ ) -  f~(~,y))  < / ~ ( ~ , y )  - -  

for any x E X and any y E  M(x,  fl, 7) • 

P r o o f :  (2.4) is a direct consequence of Proposit ion 1. Moreover, let 
y E M(x ,  ~, 3') then: 

g(x,y, fl) < i n f [ f 2 ( x , z ) - f l f l ( x , z ) ] + 7  
- -  z E Y  

< inf [f2(x, z) - f i l l  (x, z)] + 7 
- zeM2(x,~) 
< inf [v2(x)+e-- f l f l (x ,Z)]+ 7 
- -  z E M z ( x , e )  

<__ v2(z) + e - ~o1(~, ~) + 7 .  

Hence we get: 

for any x C X,  any y C M(x,  fl, 3'). 

R e m a r k .  If M2(x) # ¢ then (2.5) holds for e -- 0 

wl(~) - ~ _< II(~,y) + [v2(~) - /2 (~ ,y ) ]  _</~(~,y) 

If M2(x) = 0 then wl(x)  = - e o  and the previous inequalities are trivially satisfied. 

Now let us introduce the marginal  function of the first level problem in the prob- 
lem QP,~ for ~3 > 0, 7 >- 0 

ml  (x, ~3, 7) = inf  f l  (x, y) 
ye  M (ar,/~,"/) (2.6) 

t1(/~,7) = inf m l ( ~ , f l , 7 )  • 
x E X  

The following proposition is obvious. 
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PROPOSITION 3 Let e >_ O, ~ > O, 7 >_ O. 
Under the assumptions (2.1) and (2.2) we get: 

(2. 7) ~ ( x ,  ~) - ~ +_...._!7 < m~(x, ~, 7) - 

<_ sup f~(x, y) < w~(~,7 + 2Ze) 
yeM(x , t~ ,7 )  

(2 .s )  vl(~) ~ + 7 < tl(fl, 7) < inf sup 
- -  --  x E X  y E M ( x , f l , 7 )  

~__ Vl  ( 7  "~ 2 f i e )  . 

fl(~, y)... 

Remark .  In [33, Theorem 1] it is proved that if X and Y are metric compact 
spaces with f l  and f2 continuous on X × Y, then: 

7,~ 0 + lim t l ( f l , ,7 , )  = vl if /3, --+ 0 + 7- ~ 0+ with ~ --+ . 

We shall prove a similar result under weaker assumptions by using some properties 
of the regularized weak Stackelberg problem S(e). 

3. On the  regular ized  weak Stackelberg  p rob lem S(e) 

First of all we recall some useful properties of vl(e), the value of the problem S(e) 
considered in the introduction. 

PROPOSITION 4 ([28], Proposition 2.4) 
Suppose that Y is sequentially compact and 

(3.1) the function f2 is sequentially lower semicontinuous on X × Y .  

(3.2) For any (z, y) E X x Y and any sequence (x,,),~ converging to z there exists a 
sequence (Yn)n such that: 

limsup f 2 ( z , ,  Yn) <_ f2(x,  y )  . 
n---), o o  

(3.3) For any x E X there exists a sequence (zn),, converging to x such that for any 
y E Y and any sequence (Yn)n converging to y we have: 

limsup f l ( x n , y n )  <_ f l ( z , y )  

then lim vl(e,~) = vl for any ~,, --~ 0 +. 
r~ ..+ o o  
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Proof :  Recalled for the sake of convenience of the reader. First of all, we notice 
that,  for any z E X and any ~ > 0, 

M2( ) c 

We can deduce that  Wl(~:) < Wl(Z,¢) and Vl < Vl(e) for any ~ k 0. So we get: 

Vl < l iminf  vl(en) for any ~n --+ 0 + • 
r t  --~.oo 

Now, in order to prove that  l imsup Vl(en) < vl for any sequence ~,~ --+ 0 + we have 
r t - t ,  oo  

to prove the following property (see [20], Proposition 3.1.1): for any z 6 X and for 
any ¢~ --+ 0 + there exists a sequence (x,),~ in X such that:  

l i m s u p w l ( x , , e , )  < w l ( z )  . 
n--+  Go 

Let z 6 X and ( x . ) .  be a sequence as defined in the assumption (3.3). Assume 
the previous inequality is false, that  is there exists a real a such that: 

wl(x) < a < l imsup wl(z,~,6,) . 
n--+  oo 

Then, there exists a subsequence (Wl (z,~, e ,  k))k verifying wl (znk, enk) > a for any 
k E N. Therefore there exists a sequence (y,~),~ such that  Y-k E M2(zn~,e,~k) and 
f l (ank,  Ynk) > a for any k E N. From the sequential compactness of Y, there exists 
a subsequence (Y,~kj)j, converging to ~ such that: 

From (3.1) we get: 

]2(x,~) < l imsup v2(z.k~ ) < l imsup v2(a.) . 
j---~ O0 n- -~O0 

But the assumption (3.2) is equivalent (see again Proposition 3.1 in [20]) to the 
following: 

l imsupv2(x.)  < v2(z) then ~ 6  M2 (z )  . 

Therefore, by using (3.3), we have: 

a < l imsup f l (X.k j ,y .k j  ) < f l(Z,~) < Wl(a) 
j ~ c ¢  

which contradicts Wl(X) < a. We have just proved that  lim vl(z,0 = vl and it is 
rt--+ oo 

easy to conclude that  lim Vl(~) = Vl. 
¢ - ~ - 0 +  
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R e m a r k .  Let us recall that  in [33] this result is obtained under continuity of the 
functions f l  and f2. 

Now, let us recall a pointwise convergence result on Wl(., an) to Wl, for sn decreas- 
ing to zero, which is merely an adaptation of well known results (see, for example, 
[10]). 

PROPOSITION 5 Let Y be a sequentially compact space and assume the following 
are satisfied: 

(3.4) the function y --+ fz(x,y)  is sequentially lower semicontinuous on Y for any 
x E X ;  

(3.5) the function y -+ f l (x ,  y) is sequentially semicontinuous on Y for any z E X;  

then 

i) lim wl(x,¢ . )  = wl(z) for any x E X and any ¢,~ decreasing to zero; 
n --~ oo 

ii) lim v1(¢~) = vl for any s .  decreasing to zero. 
n -.% oo 

Proof." Prove i). For sake of convenience, we shall give a direct proof. 
First of all, from condition (3.4) and the sequentially compactness of the space Y 
we notice that  M2(x) • ~ and v2(x) is a finite number for any x E Z .  
For e > 0 and fixed x E X, the problem { Sup f~(x,y) can be seen as a 

y E M 2 ( x , e )  

perturbed maximization problem with right-hand side perturbations due to the 
parameter ~. Now, let en "N 0+- It is easy to see, from (3.4), that  for any fixed x E 
Z ,  the multifunction M2(x, .) is sequentially closed at 0 (with M2(x, 0) = M2(x)). 
Furthermore, for any n E N, there exists y, E M2(x, Sn) such that:  

f l ( x ,  y . )  = 

From sequential compactness of Y there exists a subsequence (yn~)k converging to 
Y0 with Yo E M2(x) and from (3.5) we get: 

l imsup wl(x,enk) = l i m s u p  f l ( x ,  y , k )  < f l (x ,  y) _< wl(x) . 
k--+co k--+c~ 

Now, since we also have Wl(X) < wl(z, e~) for any n, it is easy to conclude that: 

lim wl(x , e ,~k )  = Wl(X) • 

Finally, by a classical argument, we deduce that:  

lim w l ( x ,  en) = wl(z) 

for a n y x E X  and a n y e n ~ O  +. 
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Prove ii). From i) and proposition 3.1.1 in [20] 

l imsup vi(en) <_ vl 
n-~.oo 

and the result follows. 

R e m a r k .  ii) of proposition 5 gives an alternative result for the convergence of 
the regularized value vi(e). In fact, assumptions (3.1) and (3.2) are stronger than 
assumption (3.4) but assumption (3.3) is weaker than assumption (3.5). 

In the following, for any sequence of sets An, n E N, in a space Y, 

LimsupAn = {y E Y : there exists a sequence (Yk) converging to y 

such that  Yk E Ank for a selection of integers (nk)} 

PROPOSITION 6 Under assumptions (3.4) and (3.5) we have: for any en "~ 0 + 

Limsup Mi(en) C Mi , 
n 

where Mi(e) denotes the set of the solutions to S(e) for any e > 0 and -Mi is the 
set of the solutions to the lower semicontinuous regularized problem -S defined by 

( 
~Min sup fi(x,Y) 
( xEX yEM2(x) 

where sup f i ( x , y) is the lower semieontinuous regularized function of sup f i ( x , y) 
yeM~(x) yEM2(x) 

that is: if'Zn is a solution to S(¢n) and (~n,)k is convergent to ~ for a selection of 
integers (nk) then we have: ~ is a solution to -S. 

Proof :  Let gn(x) = Wl(X, en) = sup f i (x ,y )  and g(x) = ~(x)  for any 

x E X .  
It is sufficient to verify that  g,~ is epiconvergent (or P--convergent) to g, that  is 
([9], [7], [3]) 

- for any x E X and any (xn)n converging to x we have: liminfgn(Xn) > g(x) 
n--4. oo 

- for any x E X there exists (~n)n converging to x such that:  lim supgn (~n) < g(~), 
n--e- oo 

and to apply, for example, proposition 2.3.1 in [21]. 
Now let Vn be a sequence decreasing to zero. Since Wl(X, en) > wi(x, en+i) for 

any x E X and any n E N, we know from [3] that: wi( ' ,en)  is epiconvergent to 
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inf wl (., en) and wl (-, en) is epiconvergent to wl 
IS 

In the next proposition we recall conditions ensuring that  M1 (e) is non empty. 

PROPOSITION 7 Let X and Y be two sequentially compact spaces and Y be a convex 
space. Assume that (3.1) and the following are satisfied: 

(3.2e) For any (x, y) e X × Y and any sequence (Xn)n converging to x there exists a 
sequence ( y , ) ,  converging to x such that: 

l imsup f2(x~,yn) <_ f2(x ,y)  . 
n --+ o o  

(s.6) The function y ~ f2(~',y) is strictly qt, asicon,ex ([32]) on V for any x ~ X.  

(3. 7) The function f l  is sequentially lower semicontinuous on X x Y 

then, for any e > O, there exists at least a solution x~ to the problem S(e). 

Proof :  Is a consequence of Proposition 2.2 in [28]. Again, for sake of convenience, 
let us recall the proof. 

Proof of  the Proposition 7 
In the following A~ denotes the sequential closure of A (that is y E ~8 if and only if 
there exists a sequence (Yn)n in A converging to y) and LiminfAn = {y E Y / t h e r e  

1% 

exists a sequence (Yn)n converging to y such that  Yn E An for any n E N}. 
In order to prove Proposition 7 it is sufficient to prove that,  for any e > 0 and 

any sequence (Xn)n converging to x, we have: 

(3.8) M~(x,e) C LiminfM2(x , ,e )  ~ 

and, taking into account the condition (3.7), to apply Proposition 2.3.1 in [22]. In 
fact let Ms(x,  ¢) = {y E Y / f2 (x ,  y) < v2(x) + ~} the set of the strict e-solutions to 
the problem P(x) .  Under the assumption (3.6), let us prove that  

(3.9) M2(x,e)  C M2(x,e)  

Let y E M2(x'~) such that y y£ M2(x'e) '  [l° E M2(x'¢) and [In -- l ! l°  + ( 1 - 1 )  

Then (~),~ is convergent to .~, 

f2(x, yn) < max(f2(x,~lo, f2(x,y))  <_ v2(x) q-¢ 

and ~, ~ M2 (z, e). 
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Therefore y E M2(z, ~) and (3.9) is proved. But for any sequence ( z , ) ,  converg- 
ing to z it results: 

(3.10)M2(z, ~) C_ Liminf M2(zn, e) . 
n 

In fact, let y E M2(z, e). From (3.2e) there exists a sequence (yn)n converging to y 
such that l imsupf2(zn,  yn) <_ f2(z,  y) and, from (3.1) and (3.2e) we have (see, for 

n - - + ~  

example, Proposition 3.1.1 and 4.1.1 in [20]): 

(3.11) lim v2(z,~) = v2(z) . 
Ft.-+ o o  

So, for n sufficiently large, f2(zn,yn) < V2(Zn) + e that is Yn E M2(zn,e) and 
(3.10) is satisfied. 
Then we have: 

M2(z,e) C_ M 2 ( z , e ) c L i m i n f M 2 ( z , , e )  
n 

_C Liminf M2 (zn, e) s 
n 

[] 

R e m a r k .  Under the assumptions of Proposition 5, if wl is lower semicontinuous 
in X we have: 

Limsup M1 (en) C M1 the set of the solutions to S 
n - + o o  

for any ~, ~ 0 + . 
Moreover, if there exists a unique solution ~ to S then: 

Limsup Ml(en) = {~} for any ~n x,~ 0 + . 

4. N e w  r e s u l t  o n  M o l o d t s o v  r e g u l a r i z a t i o n  

First, by using Proposition 4 or Proposition 5, let us improve Theorem 1 in [33]. 

PROPOSITION 8 Assume conditions (2.1), (2.2) and (3.1) to (3.3) (or (3.4) and 
(3. 5)) are satisfied, we have: 

7n 
lim tl(fln,7=) = vl for any fl, "x~ 0 + 7,  x.~ 0 + such that -~n -+ O+ 

7n 0+" P r o o f :  Let ;3,~ x,~ 0 +, 7n ~ 0 + such that ~ ~ From (2.8) with e = 0 

7n 
vl - 7 .  < < vl( . + 

We get the result by using Proposition 4 (or Proposition 5). [] 
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Remark .  In the previous result X is not necessarily sequentially compact. More- 
over (3.2) and (3.3) are even weaker than the following conditions: 

(4.1) the function y -+ f~ (x, y) is sequentially upper semicontinuous for any x E X; 

(4.2) the function y E f l  (x, y) is upper semicontinuous for any x E X. 

Now, we are interested in existence of solutions to the problem Q~"Y and their 
connections with solutions to S. 

PROPOSITION 9 Let X and Y be two sequentially compact spaces. Assume assump- 
tions (3.1), (3.2e) and the following are satisfied: 

(4.3) f l  is sequentially continuous on X x Y 

then there exists at least a solution to the problem Qz,7 for any 8 >_ 0 and 7 > O. 

Proof:  It is sufficient to have the function fl  sequentially lower semicontinuous 
on X × Y and the multifunction M(., 8, 7) sequentially closed graph (see [20] for 
example) in order to obtain the marginal function ml (., 8, 7), as defined by (2.6), 
sequentially lower semicontinuous (see, for example, Proposition 4.2.1 in [20]). But, 
under the assumptions, the function g = f2 - 8 f l  satisfies the following conditions: 

(i) g is sequentially lower semicontinuous in X × Y 

(ii) for any (x, y) E X × Y and any sequence (xn) ,  converging to x there exists a 
sequence (Yn)n such that 

limsup g(xn,Yn, f l )  <_ g(x ,y ,  8) 
. --I. o o  

which ensures that M(-, 8, 7) is sequentially closed graph on X. 

Remark .  If 8 = 0 we get the regularized strong Stackelberg problem ([24]). 

In order to study the convergence of optimal solutions to Q~,~*, for 8- ~ 0 + 
and 7- ~ 0 +, let us give pointwise convergence and epiconvergence results for the 
marginal function rnl of the upper level in the problem Q#-,~,  as defined by (2.6). 

PROPOSITION 10 Let Y be a sequentially compact space and assume that (2.1), 
(e.e), (3.4) and (3.5) are satisfied. Then, /or  any 8n "~ 0 + and 7,  "~ 0 + such that 
7--Ln "-+ 0 + we have: 
8,  

(4.4) m l ( x , S n , 7 ~ ) ~ W l ( Z )  f o r a n y  z E X .  
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P r o o f :  Obvious from (2.7) with e = 0 and i) of Proposition 5. 

Now, let us denote: 

(4.5) m i , n ( z ) = m i ( z ,  fl,,,7, ) fo rany  z E X  a n d a n y  n E N  

(4.6) N n ( a ) = { z E X / m l , n ( z ) < t l ( f l n , T n ) + a }  for a _ > 0 .  

Recall M1 -- {z E X /~ I (Z )  = 731}, where 

~~(z) = lim infwi (z) . 
z.--I.~ 

COROLLARY 1 Under the assumptions of Proposition 11 we have: 

LimsupN,(c~,~) C_ M i  for any a,~ "~ 0 + . 
t l  

6n O+ PROPOSITION 12 Let ~,~ "~ 0 +, ~,~ "~ 0 +, 7,* "~ 0 +, a,~ "~ 0 + such that -~, --+ 

7n O+" and -~n -'+ Let Y be sequentially compact. Under assumptions (P.1), (2.2), 

(3.1), (S.2), (3.3), if  xn E Nn(an), Yn E M2(xn,en) and (xn,yn)n is convergent to 
(x*, y*) then (x*, y*) is a lower Stackelberg equilibrium for S that is ([25]): 

PROPOSITION 11 Let Y be a sequentially compact space and assume conditions 
(Z.1), (e.e), (s.4) and (3.5) are satisfied. Let (fin) and (Tn), be two sequences 
of real positive numbers decreasing to zero such that lim 7- n ~ - ~ ,  = O, then: ml.n is 

epiconvergent to wi. 

P r o o f :  From (2.7) 

7n 7n 
- T .  -< w l  - K -< 

then we get, for any z and any sequence (Zn)n converging to z: 

~ i ( z )  < l i m i n f ~ i ( z , )  < l iminf m i , , ( z , )  . 

Moreover, in the proof of Proposition 6, we proved that wl(., en) is epiconvergent 
to ~ l  for any ~n decreasing to zero. 

So, for any • E X, there exists (zn)n converging to m such that: 

l imsup wi('zn,Tn + 2flue) < ~l(Z)  • 
n--l- ~ 

Now ml,n(z) < Wl(Z,"[n -]- 2t~nc) for any z e X and l imsup mi,n(~n) < ~l(~g)- 
n--+(x) 
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/l(z*,y*) <_ vl and y* E M2(x*) . 

Proof." I fxn  E Nn(an) and Yn E M2(xn,en) we have: 

m~,.(x.) < t l ( f . ,  ~.) + ~.  

and 

f~(x. ,  y.) < w~(x . ,~ . )  = sup A ( x . , y )  
yeM2(x. ,e.)  

but, from (2.7), 

wl(x.,  ~ )  < . u ( x . ,  f.,-~.) + - -  

then f l (x , ,y , , )  <_ t l ( f n , 7 , )  + ~ ,  + - -  

sequential lower semicontinuity of f l ,  we obtain: 

$1(~*, y*) _< vl 

Finally, from conditions (3.1) and (3.2), we can deduce that y* E M2(x*) 

~,, 4- 7n 

6,, 4- 7n and, by using Proposition 8 and the 
f .  

In the next proposition M(x,  f ,  0) is supposed to be a singleton for any x E X. 
This allows to obtain as accumulation point an exact lower Stackelberg equilibrium 
pair ([1]) that  is a point (~,y) such that: 

E M2 (~) and f l  (~, Y) : vl o 

PROPOSITION 13 Suppose (2.1), (2.2), (3.1), (3.2), f l  continuous on X x Y and 

(4.7) M(x,  fl, O)={y(x , f ) }  forany x e X ,  f>_O.  

Let (~n ~ O+, fn ~ O+, xn e Nn(a,) and yn = y(xn,f•). If (xn,yn)n is con- 
vergent to (x*, y*) then (x*, y*) is an exact lower Staekelberg equilibrium pair for 
S. 

P r o o f :  From Proposition 12 it is sufficient to prove that fl(x*, y*) > vl. 
But yn(x,, fin) E M2(xn, 2fine) (Proposition 1) then 

t l( fn) = inf f l (x ,y(x , f~))  < fl(xn,yn) 
x E X  

and, from Proposition 8, we get the result. 

R e m a r k .  For example, assumption (4.7) is satisfied if the function y -~ f2(x, y) is 
convex and the function y -4 f l  (x, y) is strictly concave. 
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5. M o l o d t s o v  va lue  u n d e r  p e r t u r b a t i o n s  

We are interested to consider perturbations on the da ta  of the problem S in order 
to open a way for the use of numerical approximation methods. 

So let us consider two sequences (fi,n) for i = 1, 2 of extended real valued functions 
on X x Y, the perturbed regularized weak Stackelberg problem: 

Min sup f l , . (x ,  y) 
xEX yEM2,~,(x,$) 

where M2,n(x,e) is the set of e -  solutions to the problem: 

Pn(x) ~Min f2,n(x,y) 
ly6.Y 

and the perturbed Molodtsov regularized Stackelberg problem: 

Minzex infyeM=(.,a,.) I1,~(~,y) 

where Mn (x,/~, 7) is the set of 7-solutions to the problem: 

R~(z) ~Min f2,n(X, y) - flfl,n(X, y) • 
' lyeV 

Let us denote 

Vz.n(X) = inf f2,n(z,y) 
yEY 

vl,,~ (e) = inf sup fl,,~ (x, y) , 
~eX yEMz,,~(x,~) 

ti , .(/~,7) = inf inf f l , . ( x ,y )  ; 
o;EX yEM~ (x,/~,7) 

tl,n(fl, 7) will be called the perturbed Molodtsov value. 
First let give some convergence results for tl,n(fl, 7n) when fl is a fixed positive 

number and 7~ ~ 0 +. 

PROPOSITION 14 Under the following assumptions: X is sequentially compact and 

(5.1) vl,VZ,n(X) and vz(x) are real finite numbers for any x E X and  a n y  n ~ N; 

(5.2) the sequence fl,n is equibounded on X × Y that is to say: there exists c > 0 
such that Ifl,n(x,y)] < e forn  E N and for any (x,y) E X x Y;  

(5.3) for any (x, y) E X × Y,  for any sequence (z,~, y . ) .  converging to (x, y) we have 

l iminf  f2 ,n (x . ,y . )  >_ f2(x,y) ; 
~-+0o 
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(5.4) for any (x, y) E X x Y and any sequence ( z . ) .  converging to x in X there exists 
a sequence (Yn)n in Y such that 

limsuph,.,(xr~,y,~) < h ( x , y )  ; 
t z ~ ,  oQ 

(5.5) for any (x ,y)  E X x Y and any sequence (xn,yn)n converging to (x ,y)  we have 

l iminff l ,n(Xn,yn) >_ f1(x,Y) ; 
n - - t .  o o  

(5.6) for any x ~ X there exists a sequence ( ~ ) .  converging to x such that for any 
y E Y and any sequence (y,~)n converging to y: 

l i m s u p f t , . ( g . , y ~ )  <_ f~(~,y) , 
n - - I - ~  

then 

(5. 7) vl - ~ _< limsuptl,,,(/?,7,~)n_+~ <- v1(2~c) for any e > 0 and fl > O, 

and limsupt~,~(fln,'yn) < vl. 

P r o o f :  Let us denote 

(5.s) m, , . (~ , /~ , , )  = inr k , . ( z ,  v) 
ueM~(.,~,-y) 

we shall call the perturbed Molodtsov marginal function. As in Proposition 3 we 
can prove, under assumptions (5.1) and (5.2) that,  for ¢ _> 0, 7 -> 0 and/?  > 0: 

(5.9) ~ l , . ( ~ , s ) -  e+---2 < ml,.(x,/~,v) < ~ 1 , . ( ~ , ~ + 2 & )  

(5.1o) vl,.(e) e + 7  
- - 7  _< h,.(fl ,  v) _< . , , . (v  + ~&) 

Let % converging to zero. From Proposition 5.3 and Remark 5.3 in [26], under the 
assumptions (5.1) and (5.3) to (5.5) we have: 

vl < limsupvt,r~(~) for any e > 0 ; 

£ 
then Vl -- ~ _ limsuptl,n(/3,n_+c~ 7n). 

NOW, let us prove that: 

limsupvl,n(3% 4-2f~c) < v1(2~c) . 
n - - I -  O0  

Indeed, under assumptions (5.1), (5.3) and (5.4): 
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Limsup M2 (xn, e ,  + ~) C M2 (x, ~) 

for any sequence (xn),, converging to x, any ~ _> 0 and any sequence Vn "~ 0 + (only 
but an adaptation of the proof given in Proposition 4.1 [25]), then, as in Proposition 
5.1 in [26] we can prove that: 

lim sup Vl,n (~, + ~) _< Vl (~) 
n - . ~ o o  

for any en converging to zero and e > 0. Finally, from tl,n(~n ,Vn) <_ vl,n(V,~ +2flnc) 
and Proposition 5.2 in [26], we get the second result. • 

l~emark .  Under assumptions (5.1), (5.3) and (5.4) we have also: 

Limsup M ,  ( z , ,  ~ ,  7~) C_ M2 (~) • 
n 

Now, let us consider flk decreasing to zero. We have: 

PROPOSITION 15 Under assumptions of Proposition 14 and 

(3.4) y -+ f2(x, y) is sequentially lower semicontinuous on Y for any x ~ X ,  

(3.5) y -4 f l  (x, y) is sequentially upper semicontinuous on Y for any e 6 X ,  

we have: 

lim limsuptl,,~(flk, 7n) = vl 
k- -+  o o  n - - +  oo  

for any 7n "~ 0 + and ~k "~ 0 + . 

Proof :  Let f l k ~ O  + a n d a k = f l ~ .  
From inequalities given by (5.7) 

vl < lira limsuptl,,~(f~k,Tn)< . . .  < lim vl(2~kc) 

and we can conclude by using Proposition 5. 

We also can obtain a best lower bound for l imsuptl ,n(fl ,  7-) and a new conver- 

gence result for tl,n(flk,~/n). 

PROPOSITION 16 Let V be a vectorial topological space and Y be a convex compact 
subset of V.  For ~/~ "~ 0 +, under assumptions of Proposition 14, (3.4), (3.5) and 

(5.11) y -+ f2(x ,y )  is strictly quasi convex on Y for any x E X and 

sequentially lower semicontinuous on Y 
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then 
g 

(5.12) vl(e) - ~ < liminftln..+co n(fl'~/n) ~ ' '"  ~ limsupQ,n(/3, < v1(2/3c) 

for any e > O and /3 > O. 

Proof:  Taking into account the proof of Proposition 14 it is sufficient to apply 
Poposition 3.8 in [27]. 

PROPOSITION 17 I f  the assumptions of Proposition 16 are satisfied, for fin "~ 0 +, 
7n ~ 0 +, we have: 

(5.13) lim ( l i m t l ( / 3 n , T k ) ) = v l .  
k - + o o  

Proof:  Let/3n x,~ 0 + and c~k =/3k 2. 
From (5.12) 

vl = l im(vl (~k)  -/3~) _< liminftl,~(/3k, 7,~) _< 
lim sup ' ~  

{ liminf } k ~  

. . .  l imsup t l ,n ( f k ,  Tn) < lim vl(2fnc)  = Vl 
limsup n-~oo n - ~  

k - + ~  

and we get the result. 

COROLLARY 2 I f  the assumptions of Proposition 17 are satisfied, for any 7n ~ 0 + 
there exists an increasing sequence k(n) of integers converging to +co such that 

(5.14} lim tl,,(/3k(n),Tn) = vl . 
n--.)- oo 

Remark .  In Proposition 15 and 17, by using Proposition 5, assumptions (3.4) and 
(3.5) can be substituted by assumptions (3.1) to (3.3). 

6. Molod t sov  marg ina l  func t ion  u n d e r  pe r t u rba t i ons  a n d  convergence  
of  solut ion 

Let us determine convergence results for the marginal function ml,n (',/3, V) of the 
problem Q~,~. 

Let us recall that for existence of a solution to Q#n ,~ it can be applied Proposition 
4.2 to the functions fl,n and f2,n. 
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A - V e r t i c a l  p e r t u r b a t i o n s  
When X and Y are compact subsets of finite dimensional Euclidean spaces, a 

7n 
first result concerning m1, . ( ' ,~ . ,%)  (as ~,. ".~ 0 +, 7- ~ 0+, ~"  ~ 0+) can be ob- 

tained when the considered perturbations on the lower level problem correspond to 
the so called "vertical perturbations" of mathematical programming ([18]). More 
precisely, for e.  '~ 0 + we have: 

Min inf fl (x, y) 
zeX yEM,~ (z,fl.,'Y.) 

where M.(x, ft., 7-) is the set of 7.-solutions to: 

Min f2(x, y) - fl,~fl (x, y) 
R~"(x) g,(=,v)_<,,, i=l,q 

yEY 

associated to the following so called weak bilevel programming problem 

Min sup f l (x,y)  
zEX yEMa(x) 

where M2(x) is the set of solutions to: 
S 

Min f2 (x, y) 
R(z) g,(~,v)<_o i=l,q 

YEY 

Again, let us denote t1 , . (~. ,7 . )  = inf inf fl(x,y). 
xEX yEMn(x,fln,?n) 

First, for ¢ ~ 0, let us give preliminary results connecting the set T.(x, e) of the 
e-solutions to the perturbed mathematical programming problem, where gi,.~ is a 
general perturbation of g~ 

Min 
g~,,,(z,y)~O i=l,q 

YEY 

v) 

and the set T(x, e) of the e-solutions to the original one 

Min 
g~(z,y)<_O i=l,q 

y6Y 

f(x, B) 

LEMMA 1 (from Theorem 4.1 in [24]). 
If the following assumptions are satisfied 
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(6.1) fn is continuously convergent to f ,  i.e. lira fn (xn ,yn)  = f ( x , y ) ,  for any se- 
rl . . .4 ~ 

quence (xn, Y.)a converging to (x, y); 

(6.2) g~,n is continuously convergent to gi for i = I, q; 

(6.3) for any x E X there exists y ~ Y such that gi(x, y) < 0 for i = 1, q; 

(6.4) for i = 1, q, n E N,  x E X the function y ~ gi,n(x, y) is strictly quasi convex 
and continuous on Y ;  

then LimsupTn(xn,O) C T(z ,O)  for any ~ E X and any sequence (xn)~ converging 
n 

to x. 

LEMMA 2 ([2~], Theorem 5.3 and Remark 5.1) . 
I f  assumptions (6.1) to (6.4) and the following are satisfied 

y --~ f ( z ,  y) is strictly quasi convex on Y for any x E X , (6.6) 

then: 

(6.5) 

(6.6) 

(6.# 

(6.9) 

T(x, z) C_ LiminfTn (xn, ~) 

for any ¢ > O, any x E X and any sequence (Xn) n converging to z.  

For what concerns "vertical perturbations",  we first state the two following propo- 
sitions: 

PROPOSITION 18 Let an "x~ 0 +. I f  the following assumptions are satisfied: 

for any x ~ X there exists y E Y such that g i (x ,y)  < 0 for i = 1, q; 

f2 and gi are continuous on X x Y for i = 1, q; 

x --+ gi(x, y) is strictly quasi convex on X for any y E Y and i = 1, q; 

y --+ gi(x, y) is convex for any x E X ;  

y --+ f2(x ,y )  is convex for any x e X ;  

t h e l 2  - 

i) LimsupM2,,~(xn) C_ M2(x), where M2,. is the set of solutions to 
n 

Min 

yEY 

I2(x, y) 

and M~(x) the set of solutions to 
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ii) 

Min 
g,(,,u)<_o /=l,q 

Y E Y  

for any x E X and any sequence (xn) converging to x. 

For any x E X there exists e . (x )  = r ( z ) a ,  such that: 

M2(x) C Liminf Mz, . (x ,  en(x)) . 
tt 

P r o o f :  
i) is a consequence of lemma 1. 
Prove ii): let ~ E M2(x) that  is gi(z ,~)  <_ 0 for i = 1,q and f~(x,-~) < f2(x ,y )  for 
any y E Y such that  g/(x,y)  < 0 for i = 1,q. Then, by using an exact penalty 
technique as in [41] we have, under assumptions (6.3), (6.8) and (6.9): there exists 
r(x) E R + such that: 

q 

f2(~,v) _< f~(~,u)+ ~(~) ~ [g/(~,u)] + 
q i = 1  

for any y E Y with [gi(x, y)]+ = max[gi(x, y)), 0]. This implies: 

f2(~,9) < f2(x, u) + (g~(~, u) - ~ . )+  + ~(~)-. 
q 

and f2(x ,~)  <_ f2(x ,y )  +r (x ) (~ ,  for any y E Y such that  gi(x ,y)  <_ ~,~ for i = 1, q. 

PROPOSITION 19 I f  the assumptions of Proposition 18 and the following are satis- 
fied: 

(6.10) y -+  f l ( x , y )  is continuous on Y for any x E X ,  

w e  hc lve  

i) for any x E X there exists s . ( x )  = r ( x ) a ,  such that: 

l iminf  wl,n(z ,  er,(x)) >_ wa(z)  ; 

ii) for any x E X ,  for any ~n ~ 0 + 

l imsup wl , . (~ ,~ . )  _< wl(~) 
~ - + o o  
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P r o o f i  Let us prove point i): let x E X and e,,(z) as defined in ii) of Proposition 
18. For any y E M2(x) there exists (Yn)n converging to y such that: 

y e 

Therefore: 

> 

and, from (6.10), we get: 

l iminf  WLnk(z,en(X)) > f l (a ,~)  

and the result follows. 
Prove part  ii): let x e X such that w~(z) < +oo. We have w~,,,(x,~,,) < +c~, 

at least for n sufficiently large. Then, for any y > 0, there exists a sequence (Yn)n 
verifying ~,  E M ,  (z, ~n) such that w~,,(z, ~,) _< f~ (x, ~n)+rl for n sufficiently large. 
Y being compact, there exists a subsequence (Ynk)k converging to y e M2(x) as 
k -+ q-c~. Next, by using assumption (6.10), we get: 

l imsup wl,,~(x,~,k) ~ . . .  
k--~ oo 

. . .  < lim sup f l  (x, Ynk) -< f l  (a, Y) + ~/_< wl (~) + r/. 

Now, it is easy to prove that  the previous result also holds for the entire sequence 
(wl, ,(x,~n)n, that  is to say: 

l imsupwl , , ( x ,~ , )  _< Wl(X) . 
t ~ - +  o o  

Now, we are able to give a pointwise convergence result for ml,n(' ,  fin, 7n) to wl, 
where m a,n is defined by (5.8) and vertical perturbations are considered in the lower 
level problem. 

~/n O+ 2 PROPOSITION 20 Let ~n "xa 0 +, 7n x~ 0 + such that -~n -~ and a ,  = ~ .  As- 

sume that the assumptions of Proposition 19 are satisfied. Then we have: 

ml,n(x,]~n,~/n) --~ Wl(X) f o r  any X ~ X . 

P r o o f :  From inequalities (5.9), for any x E X,  

wl( ,c) < 

• . . < w l , n ( x , T n + 2 ~ n c )  fo rany  e > _ 0 .  
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Let e.  (x) = r(x)fn ~ with r(x)  as defined in Proposition lS, then from Proposition 
19, 

Wl(Z) < l imin fwl ,n ( z ,  en(z))  < . . .  
n - ~  O0  

< liminfml,,,(z,f,~,Tn) < limsupml,n(z, f,~,Tn) 
r~ ---4- CO n ...ae OO 

< limsupwl.n(x, 7,*, 2fl,~c) <_. Wl(X) 
n - - +  o o  

and the result follows. 

B - Genera l  p e r t u r b a t i o n s  
Unfortunately pointwise convergence of ml ,n ( ' , f n ,  7n) to wl is not generally ob- 

7- 0 +) for general perturba- tained (for any fin "~ 0 +, 7n "x~ 0 + such that ~'n --'> more 

tions. However we can give a trivial partial result on epiconvergence. 
In the following X and Y will be again sequentially compact subsets of topological 

spaces and the original problem S and the perturbed one Q~,7 are the problems 
defined respectively in the introduction and the beginning of section 5. 

PROPOSITION 21 Under assumptions (5.1) to (5.6) we have 

(6.11) for any z 6 X ,  there exists a sequence ( ~ , ) ,  converging to x such that for any 
7n O+: ;3, "~ 0 + and any 7 ,  ",, 0 + with -~, x,~ 

limsup ml,n(~.,/3.~, 7.)  _< Wl(X) . 
~ - - 9 ,  O 0  

Proof." The proof is straightforward by using: 
LimsupM2,n(z,~,en) C_ M2(z)  for any x 6 X and any sequence (z.)  converging 

to z (Remark 4.2 and Proposition 5.2 in [26]) and M n ( z n , f . , T n )  C__ M2, . (xn ,Tn + 
• 

PROPOSITION 22 Let 7n "~ 0 + and Y be a first countable topological space. Under 
assumptions (5.1) to (5.6) and (3.5) we have: 

O for any z 6 X and any sequence ( z , )  converging to x, for any fixed fl > O: 

liminf ml,n(Xn,fl, Tn) >_ W l ( Z )  ; 
n - - . +  o o  

ii) for any x 6 X ,  any sequence (Xn) converging to x and any sequence ( fk)  con- 
verging to zero: 

lim inf (lim inf ml,n (an, fl,, 7n)) > wl (~) • 
k--+~ n--+c~ 
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P r o o f :  Prove i). From (5.9), for any sn > 0 

By choosing e n (zn, z) --~ 0 + such that 

wz(x) _< l iminfwl,n(xn,  e*) , 
rl---I. O0 

(Proposition 5.4 in [26]) we get the result. 
ii) is obvious. 

[] 

For the solutions we have: 

PROPOSITION 23 Let Y be sequentially compact, a,~ "~ 0 +, ~,~ ~ 0 +, ~,~ ~ 0 +, 
~n 7n O+ 7n "~ 0 + such that "~n --4 0 + and -~n -'4 . Under assumptions (5.1) to (5.6) if  

z,~ is an an solution to the problem Q(n ~"'~"), yn E M2,n(zn,6n) and ((z,~,yn) is 
convergent to (z*, y*) then (z*, y*) is a lower Stackelberg equilibrium for S. 

P r o o f :  x,~ and yn are such that: 

m~, . (~ . ,Z . ,7 . )  < t~, . (Z. ,7.)  + a .  

f l ,n(2n,y.)  ~ Wl,n(Xn,gn) = s u p  /1 , . (~ . ,  y) ; 

but, from (5.9): 

wl , . (~ . , e . )  < m~, . (~ . ,Z . ,7 . )  + 

then 

/ 1 , . ( z . , y . )  < t 1 . . ( ~ . , 7 . )  + a .  + - -  
en q- 7,* 

and, by using (5.10): 

limsupfl,n(z,~, y,~) < limvl,n(7,~ + 2j3nc) . 
r~---).oo 

So, from Proposition 5.2 in [26] we get the result. 
[] 
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